Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism

نویسندگان

  • Yangmin Li
  • Qingsong Xu
چکیده

In this paper, the kinematics and inverse dynamics of a novel kind of mechanism called a general 3-PRS parallel mechanism is investigated. In the kinematics study, the inverse kinematics solution is derived in closed form, and the forward kinematics problem is resolved by the Newton iterative method seeking for an on-line solution to this issue. The inverse dynamics analysis is approached with two methods: Lagrangian formulations and principle of virtual work. After deriving the dynamic model by a Lagrangian formulation approach, the simulation results of two introduced examples quantitatively and qualitatively verify the accuracy of the derived dynamic equations. By introducing a simplifying hypothesis, a simplified dynamic model is set up using principle of virtual work, also a computer simulation is performed on this reduced model. The simulation results demonstrate that the simplified dynamic model is reasonable under such kind of assumptions through comparison with the precise model derived from the Lagrangian formulation. The inverse dynamics analysis provides a sound basis to develop controllers for controlling over a general 3-PRS parallel robot.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator

This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

Development of a MATLAB Toolbox for 3-PRS Parallel Robot

Aiming at one kind of 3-PRS parallel robot, the study develops a toolbox in MATLAB. The toolbox includes functions for forward kinematics, inverse kinematics, velocity kinematics, error analysis, schematic representation, and so on. The architecture of the 3-PRS robot is introduced firstly. The instructions of the functions, developing procedure and main algorithms are presented secondly. The t...

متن کامل

Matrix modeling of inverse dynamics of spatial and planar parallel robots

Recursive matrix relations for kinematics and dynamics analysis of two known parallel mechanisms: the spatial 3-PRS and the planar 3-RRR are established in this paper. Knowing the motion of the platform, we develop first the inverse kinematical problem and determine the positions, velocities, and accelerations of the robot’s elements. Further, the inverse dynamic problem is solved using an appr...

متن کامل

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Robotica

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2005